Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Frans-Jan Parmentier

Frans-Jan Parmentier

Docent

Frans-Jan Parmentier

Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions

Författare

  • Sarah E. Chadburn
  • Tuula Aalto
  • Mika Aurela
  • Dennis Baldocchi
  • Christina Biasi
  • Julia Boike
  • Eleanor J. Burke
  • Edward Comyn-Platt
  • A. Johannes Dolman
  • Carolina Duran-Rojas
  • Yuanchao Fan
  • Thomas Friborg
  • Yao Gao
  • Nicola Gedney
  • Mathias Göckede
  • Garry D. Hayman
  • David Holl
  • Gustaf Hugelius
  • Lars Kutzbach
  • Hanna Lee
  • Annalea Lohila
  • Frans Jan W. Parmentier
  • Torsten Sachs
  • Narasinha J. Shurpali
  • Sebastian Westermann

Summary, in English

Methane emissions from natural wetlands tend to increase with temperature and therefore may lead to a positive feedback under future climate change. However, their temperature response includes confounding factors and appears to differ on different time scales. Observed methane emissions depend strongly on temperature on a seasonal basis, but if the annual mean emissions are compared between sites, there is only a small temperature effect. We hypothesize that microbial dynamics are a major driver of the seasonal cycle and that they can explain this apparent discrepancy. We introduce a relatively simple model of methanogenic growth and dormancy into a wetland methane scheme that is used in an Earth system model. We show that this addition is sufficient to reproduce the observed seasonal dynamics of methane emissions in fully saturated wetland sites, at the same time as reproducing the annual mean emissions. We find that a more complex scheme used in recent Earth system models does not add predictive power. The sites used span a range of climatic conditions, with the majority in high latitudes. The difference in apparent temperature sensitivity seasonally versus spatially cannot be recreated by the non-microbial schemes tested. We therefore conclude that microbial dynamics are a strong candidate to be driving the seasonal cycle of wetland methane emissions. We quantify longer-term temperature sensitivity using this scheme and show that it gives approximately a 12% increase in emissions per degree of warming globally. This is in addition to any hydrological changes, which could also impact future methane emissions.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2020

Språk

Engelska

Publikation/Tidskrift/Serie

Global Biogeochemical Cycles

Volym

34

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

American Geophysical Union (AGU)

Ämne

  • Physical Geography
  • Climate Research

Nyckelord

  • global modeling
  • methane
  • methanogens
  • microbial modeling
  • wetland methane

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0886-6236