Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Zheng Duan

Biträdande universitetslektor

Default user image.

Triple collocation-based error estimation and data fusion of global gridded precipitation products over the Yangtze River basin

Författare

  • Cheng Chen
  • Mengnan He
  • Qiuwen Chen
  • Jianyun Zhang
  • Zhe Li
  • Zhiyuan Wang
  • Zheng Duan

Summary, in English

Error estimation and data fusion are critical to improving the accuracy of global model- and satellite-based precipitation products for practical applications. However, they face challenges over vast areas of the world due to limited ground observations. Triple collocation (TC) method can overcome this limitation and provide an efficient way for error estimation without the “ground truth” and thus also for data fusion, by leveraging multi-source observations and model outputs, which have been increasingly available in recent years. In this work, we conducted a comprehensive study on error estimation and data fusion of a number of global gridded precipitation products over the Yangtze River basin from 2015 to 2018 using TC and multiplicative TC (MTC) methods. We use three satellite-based precipitation products such as the IMERG Final (IMERG-F), PERSIANN-CDR (PCDR) and SM2RAIN-ASCAT (SM2R), and one reanalysis dataset ERA5 which contains precipitation estimates. They were grouped into two TC triplets based on different combinations: IMERG-F + SM2R + ERA5 and PCDR + SM2R + ERA5. For performance evaluation, the TC-based error estimation methods were compared to the traditional method using rain gauge data, and the TC-based data fusion methods were compared with two widely-used data fusion methods Bayesian Model Averaging (BMA) and Random Forest based MErging Procedure (RF-MEP). Results showed that ERA5 had the best performance with the largest correlation coefficient (CC, 0.435), while PCDR had the worst accuracy with the smallest CC (0.304) and the largest absolute relative bias (RB, 0.365). TC tended to underestimate the root mean square error (RMSE) with respect to the traditional gauged-based method, but MTC showed a consistent result owing to the employment of a multiplicative error model. The performance of TC-based data fusion methods had no significant difference from BMA and RF-MEP. All data fusion results were better than the original triplets, as the mean CC value increased from 0.38 to 0.47 and the mean RMSE decreased from 15.0 to 13.5 mm/day. In addition, we found that the zero value replacement in MTC had great influence on error estimation, while had limited impacts on data fusion.

Avdelning/ar

  • MERGE: ModElling the Regional and Global Earth system
  • Institutionen för naturgeografi och ekosystemvetenskap

Publiceringsår

2022-02

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Hydrology

Volym

605

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Physical Geography
  • Probability Theory and Statistics

Nyckelord

  • Data fusion
  • Error estimation
  • Multiple gridded precipitation estimates
  • Triple collocation
  • Yangtze River basin

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-1694