Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Wenxin Zhang

Forskare

Default user image.

An R package of maximum entropy production model to estimate 41 years of global evapotranspiration

Författare

  • Yong Yang
  • Huaiwei Sun
  • Modi Zhu
  • Jingfeng Wang
  • Wenxin Zhang

Summary, in English

An accurate estimation of evapotranspiration (ET) is vital for understanding the global hydrological cycle. However, large uncertainties in the present global ET products originate from the distinct model structures, assumptions, and inputs. The maximum entropy production (MEP) model provides a novel method for modeling ET based on parsimonious inputs and energy conservation. In this study, an R package for MEP (RMEP) was presented to facilitate MEP model implementation. Based on RMEP, a global ET analysis was conducted using inputs from the Global Land Data Assimilation System (GLDAS) and Global Land Surface Satellite (GLASS) products during 1978–2018, and the Mann-Kendall and Theil–Sen's methods were employed to detect the ET trends. The MEP-estimated average annual global land ET was 517 mm yr−1 during 1978–2018, and showed a close agreement with eddy-covariance (EC) measurements from 475 flux sites, with a correlation coefficient of 0.74 and root-mean-square error of 26.99 mm mon−1. The overall performance of MEP was evaluated across various land covers, and a higher ET accuracy was revealed for forestlands, wetlands, and cropland land covers. The MEP-derived ET trend corresponded well with the EC-observed ET trend, and the results indicated that the global land ET declined continuously during 1999–2018. Overall, the MEP model provided an accurate ET estimate with parsimonious inputs, which outperformed the GLDAS-Noah ET product and can serve as a global analytical method for the hydrological cycle and climate change.

Avdelning/ar

  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2022-11

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Hydrology

Volym

614

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Oceanography, Hydrology, Water Resources

Nyckelord

  • Eddy-covariance
  • ET trend
  • Evapotranspiration
  • Maximum entropy production
  • R package

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-1694