Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Wenxin Zhang

Forskare

Default user image.

Assessment of long-term water stress for ecosystems across China using the maximum entropy production theory-based evapotranspiration product

Författare

  • Huaiwei Sun
  • Jianing Chen
  • Yong Yang
  • Dong Yan
  • Jie Xue
  • Jingfeng Wang
  • Wenxin Zhang

Summary, in English

Water demand growth coupled with its high spatial-temporal mismatch of water resources will lead to an increasing water scarcity worldwide. In order to investigate a robust long-term water stress for ecosystems and regions across China, the improved maximum entropy production (MEP) method was utilized to obtain a reliable evapotranspiration (ET) product during 1982–2015. Afterwards four water stress indices were constructed based on the MEP, Penman, Priestley-Taylor and complementary relationship model. The MEP estimated ET showed a close agreement with measurements at eddy covariance sites, with R2 = 0.89 and RMSE ranged from 5 to 12 mm/month. All ecosystems were indicated to suffer from a high risk of water stress, and were ranked by desert (0.67–0.93), grassland (0.60–0.78), settlement (0.49–0.63), farmland (0.48–0.63), and forest ecosystem (0.45–0.58) with four indices. Patterns of water stress at the provincial levels were revealed. Provinces including Xinjiang, Qinghai, Inner Mongolia, and Gansu in the northern regions displayed the highest water stress, and months from December to February were most vulnerable to extreme water stress. Overall, results revealed that the MEP model-based water stress index can well characterize the water stress footprints for all ecosystems and regions in China. This study can support the policy-making for improving water use efficiency and optimizing water resource management to alleviate water stress on large scales.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2022-05-15

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Cleaner Production

Volym

349

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Environmental Sciences

Nyckelord

  • Ecosystems
  • Evapotranspiration
  • Maximum entropy production model
  • Water stress

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0959-6526