Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Frans-Jan Parmentier

Frans-Jan Parmentier

Docent

Frans-Jan Parmentier

Snowpack fluxes of methane and carbon dioxide from high Arctic tundra

Författare

  • Norbert Pirk
  • Mikkel P. Tamstorf
  • Magnus Lund
  • Mikhail Mastepanov
  • Stine H. Pedersen
  • Maria R. Mylius
  • Frans Jan W Parmentier
  • Hanne H. Christiansen
  • Torben R. Christensen

Summary, in English

Measurements of the land-atmosphere exchange of the greenhouse gases methane (CH4) and carbon dioxide (CO2) in high Arctic tundra ecosystems are particularly difficult in the cold season, resulting in large uncertainty on flux magnitudes and their controlling factors during this long, frozen period. We conducted snowpack measurements of these gases at permafrost-underlain wetland sites in Zackenberg Valley (NE Greenland, 74°N) and Adventdalen Valley (Svalbard, 78°N), both of which also feature automatic closed chamber flux measurements during the snow-free period. At Zackenberg, cold season emissions were 1 to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4 fluxes resembled the same spatial pattern, which was largely attributed to differences in soil wetness controlling substrate accumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack but detected a pulse in the δ13C-CH4 stable isotopic signature of the soil's CH4 source during snowmelt, which suggests the release of a CH4 reservoir that was strongly affected by methanotrophic microorganisms. In the polygonal tundra of Adventdalen, the snowpack featured several ice layers, which suppressed the expected gas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4 and 3800 ppm CO2 by late winter. CH4 to CO2 ratios indicated distinctly different source characteristics in the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due to geomorphological soil cracks. Collectively, these findings suggest important ties between growing season and cold season greenhouse gas emissions from high Arctic tundra.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2016-11-01

Språk

Engelska

Sidor

2886-2900

Publikation/Tidskrift/Serie

Journal of Geophysical Research - Biogeosciences

Volym

121

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley

Ämne

  • Climate Research
  • Meteorology and Atmospheric Sciences

Nyckelord

  • Arctic
  • carbon dioxide
  • methane
  • snowpack
  • tundra
  • wintertime

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2169-8953