Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Babak Mohammadi

Doktorand

Default user image.

Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA

Författare

  • Pouya Aghelpour
  • Babak Mohammadi
  • Seyed Mostafa Biazar

Summary, in English

Temporal changes of the global surface temperature have been used as a prominent indicator of global climate change; therefore, making dependable forecasts underlies the foundation of sound environmental policies. In this research, the accuracy of the Seasonal Autoregressive Integrated Moving Average (SARIMA) Stochastic model has been compared with the Support Vector Regression (SVR) and its merged type with Firefly optimization algorithm (SVR-FA) as a meta-innovative model, in long-term forecasting of average monthly temperature. For this, 5 stations from different climates of Iran (according to the Extended De Martonne method) were selected, including Abadan, Anzali, Isfahan, Mashhad, and Tabriz. The data were collected during 1951–2011, for training (75%) and testing (25%). After selecting the best models, the average monthly temperature has been forecasted for the period 2012–2017. The results showed that the models had better performances in Extra-Arid and Warm (Abadan) and after that Extra-Arid and Cold (Isfahan) climate, in long-term forecasting. The weakest performances of the models were reported in Semi-Arid and Cold climate, including Mashhad and Tabriz. Also, despite the use of the non-linear SVR model and its meta-innovative type, SVR-FA, the results showed that, in the climates of Iran, the linear and classical SARIMA model still offers a more appropriate performance in temperature long-term forecasting. So that it could forecast the average monthly temperature of Abadan with root mean square error (RMSE) = 1.027 °C, and Isfahan with RMSE = 1.197 °C for the 6 years ahead. The SVR and SVR-FA models also had good performances. The results of this checking also report the effectiveness of the merging SVR model with the Firefly optimization algorithm in temperature forecasting in Iran’s climates, so, compared with the SVR model, it is suggested to use SVR-FA for temperature forecasting.

Publiceringsår

2019-11-01

Språk

Engelska

Sidor

1471-1480

Publikation/Tidskrift/Serie

Theoretical and Applied Climatology

Volym

138

Issue

3-4

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Climate Research

Nyckelord

  • Average monthly temperature
  • Firefly optimization algorithm
  • Iran
  • SARIMA
  • SVR

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0177-798X