Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Anders Lindroth

Professor

Default user image.

The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden

Författare

  • Jinshu Chi
  • Mats B. Nilsson
  • Hjalmar Laudon
  • Anders Lindroth
  • Jörgen Wallerman
  • Johan E.S. Fransson
  • Natascha Kljun
  • Tomas Lundmark
  • Mikaell Ottosson Löfvenius
  • Matthias Peichl

Summary, in English

The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall-tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m−2 year−1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2-eq m−2 year−1, thus providing a climate-cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear-cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall-tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Centrum för miljö- och klimatvetenskap (CEC)
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2020-04

Språk

Engelska

Sidor

2353-2367

Publikation/Tidskrift/Serie

Global Change Biology

Volym

26

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Climate Research
  • Forest Science

Nyckelord

  • boreal forest landscape
  • catchment stream monitoring
  • greenhouse gas fluxes
  • land cover heterogeneity
  • net landscape carbon balance
  • tall-tower eddy covariance
  • terrestrial and aquatic carbon fluxes

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1354-1013