Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Zhanzhang Cai

Postdoc

Default user image.

A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data

Författare

  • Per Jönsson
  • Zhanzhang Cai
  • Eli Melaas
  • Mark Friedl
  • Lars Eklundh

Summary, in English

Time series from Landsat and Sentinel-2 satellites have great potential for modeling vegetation seasonality. However, irregular time sampling and frequent data loss due to clouds, snow, and short growing seasons, makes this modeling a challenge. We describe a new method for modeling seasonal vegetation index dynamics from satellite time series data. The method is based on box constrained separable least squares fits to logistic model functions combined with seasonal shape priors. To enable robust estimates, we extract a base level (i.e., the minimum dormant season value) from the frequency distribution of clear-sky vegetation index values. A seasonal shape prior is computed from several years of data, and in the final fits local parameters are box constrained. More specifically, if enough data values exist in a certain time period, the corresponding local parameters determining the shape of the model function over this period are relaxed and allowed to vary freely. If there are no observations in a period, the corresponding local parameters are locked to the parameters of the shape prior. The method is flexible enough to model interannual variations, yet robust enough when data are sparse. We test the method with Landsat, Sentinel-2, and MODIS data over a forested site in Sweden, demonstrating the feasibility and potential of the method for operational modeling of growing seasons.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2018-04-19

Språk

Engelska

Publikation/Tidskrift/Serie

Remote Sensing

Volym

10

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

MDPI AG

Ämne

  • Physical Geography

Nyckelord

  • time series
  • vegetation index
  • Landsat
  • Sentinel-2
  • separable least squares
  • seasonality
  • shape prior
  • robust statistics
  • data quality
  • gap filling

Aktiv

Published

Projekt

  • TIMESAT - software to analyze time-series of satellite sensor data

ISBN/ISSN/Övrigt

  • ISSN: 2072-4292