Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Torbern Tagesson

Forskare

Default user image.

Exploring the potential of transmittance vegetation indices for leaf functional traits retrieval

Författare

  • Yuwen Chen
  • Jia Sun
  • Lunche Wang
  • Shuo Shi
  • Feng Qiu
  • Wei Gong
  • Shaoqiang Wang
  • Torbern Tagesson

Summary, in English

Leaf functional traits are key indicators of plant functions useful for inferring complex plant processes, including their responses to environmental changes. Vegetation indices (VIs) composed of a few reflectance wavelengths hold the advantages of being relatively simple and effective and have been widely used within remote sensing to estimate leaf traits. However, the difference between the reflectance from the upper and lower part of the leaf suggests that leaf reflectance mainly provides one-sided information, constraining its ability to estimate leaf functional traits. Leaf transmittance, on the other hand, gives information about the whole leaf and has more potential to be sensitive to changes in leaf biochemistry. As transmittance-based VI is rare, this study aims to propose new transmittance-based VIs for accurate estimations of leaf traits. Three forms, i.e. the normalized difference VI, the simple ratio VI, and the difference VI were employed, and wavelength selection for transmittance-based and reflectance-based VIs were conducted, respectively. The applicability of these VIs for estimating four leaf functional traits (leaf chlorophyll (Cab), leaf carotenoids (Car), equivalent water thickness (EWT), and leaf mass per area (LMA)) were evaluated. Cross-validation using three datasets of field observations and sensitivity analysis showed that the VIs constructed using transmittance were relatively less affected by interferences from other leaf parameters, improving the estimation accuracy of Car, EWT, and LMA compared to their optimal reflectance counterparts (RMSE reduced by 2% to 15%, and MAE reduced by 7% to 20% for the pooled dataset). Our study revealed that the normalized difference VI based on transmittance showed considerable sensitivity to Car, EWT, and LMA, whereas the difference VI based on reflectance was effective in indicating Cab. The proposed transmittance-based VIs will aid remote monitoring of leaf traits and thereby plant adaptations and acclimation to changes in environmental conditions.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2023

Språk

Engelska

Publikation/Tidskrift/Serie

GIScience and Remote Sensing

Volym

60

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Taylor & Francis

Ämne

  • Environmental Sciences

Nyckelord

  • Leaf transmittance
  • remote sensing
  • sensitivity analysis
  • wavelength selection

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1548-1603