Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Thomas Pugh

Universitetslektor

Default user image.

Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets

Författare

  • Richard Wartenburger
  • Sonia I. Seneviratne
  • Martin Hirschi
  • Jinfeng Chang
  • Philippe Ciais
  • Delphine Deryng
  • Joshua Elliott
  • Christian Folberth
  • Simon N. Gosling
  • Lukas Gudmundsson
  • Alexandra Jane Henrot
  • Thomas Hickler
  • Akihiko Ito
  • Nikolay Khabarov
  • Hyungjun Kim
  • Guoyong Leng
  • Junguo Liu
  • Xingcai Liu
  • Yoshimitsu Masaki
  • Catherine Morfopoulos
  • Hannes Müller Schmied
  • Kazuya Nishina
  • Rene Orth
  • Yadu Pokhrel
  • Thomas A.M. Pugh
  • Yusuke Satoh
  • Sibyll Schaphoff
  • Erwin Schmid
  • Justin Sheffield
  • Tobias Stacke
  • Joerg Steinkamp
  • Qiuhong Tang
  • Wim Thiery
  • Yoshihide Wada
  • Xuhui Wang
  • Graham P. Weedon
  • Hong Yang
  • Tian Zhou

Summary, in English

Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%-40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.

Publiceringsår

2018-07-06

Språk

Engelska

Publikation/Tidskrift/Serie

Environmental Research Letters

Volym

13

Issue

7

Dokumenttyp

Artikel i tidskrift

Förlag

IOP Publishing

Ämne

  • Environmental Sciences

Nyckelord

  • Cluster analysis
  • Evapotranspiration
  • Hydrological extreme events
  • ISIMIP2a
  • Uncertainty

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1748-9318