Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Thomas Pugh

Universitetslektor

Default user image.

Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations

Författare

  • Wei Li
  • Philippe Ciais
  • Shushi Peng
  • Chao Yue
  • Yilong Wang
  • Martin Thurner
  • Sassan S. Saatchi
  • Almut Arneth
  • Valerio Avitabile
  • Nuno Carvalhais
  • Anna B. Harper
  • Etsushi Kato
  • Charles Koven
  • Yi Y. Liu
  • Julia E.M.S. Nabel
  • Yude Pan
  • Julia Pongratz
  • Benjamin Poulter
  • Thomas A.M. Pugh
  • Maurizio Santoro
  • Stephen Sitch
  • Benjamin D. Stocker
  • Nicolas Viovy
  • Andy Wiltshire
  • Rasoul Yousefpour
  • Sönke Zaehle

Summary, in English

The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc) from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273PgC during 1901-2012. After constraining by current biomass observations, we derive a best estimate of 155±50PgC (1σ Gaussian error). The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.

Publiceringsår

2017-11-14

Språk

Engelska

Sidor

5053-5067

Publikation/Tidskrift/Serie

Biogeosciences

Volym

14

Issue

22

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Environmental Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1726-4170