Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Petter Pilesjö

Petter Pilesjö

Professor

Petter Pilesjö

An improved non-dominated sorting biogeography-based optimization algorithm for multi-objective land-use allocation: a case study in Kigali-Rwanda

Författare

  • Olive Niyomubyeyi
  • Mozafar Veysipanah
  • Sam Sarwat
  • Petter Pilesjö
  • Ali Mansourian

Summary, in English

With the continuous increase of rapid urbanization and population growth, sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers. Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives. This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization (NSBBO) algorithm for solving the multi-objective land-use allocation problem, in which maximum accessibility, maximum compactness, and maximum spatial integration were formulated as spatial objectives; and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali, Rwanda. Efficient Non-dominated Sorting (ENS) algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions, and local search ability, and to accelerate the convergence speed of the algorithm. The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO. Furthermore, the proposed algorithm could generate optimal land use scenarios according to the preferred objectives, thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MECW: The Middle East in the Contemporary World
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Centrum för geografiska informationssystem (GIS-centrum)
  • Centrum för Mellanösternstudier (CMES)

Publiceringsår

2022-11-11

Språk

Engelska

Sidor

1-15

Publikation/Tidskrift/Serie

Geo-Spatial Information Science

Dokumenttyp

Artikel i tidskrift

Förlag

Taylor & Francis

Ämne

  • Environmental Sciences
  • Earth and Related Environmental Sciences
  • Environmental Analysis and Construction Information Technology

Nyckelord

  • Multi-objective land-use allocation
  • Spatial optimization
  • Sustainable urban planning
  • None-dominated Sorting Biogeography-based Optimization (NSBBO) algorithm
  • Operational research
  • Geospatial Artificial Intelligence (GeoAI)
  • Artificial Intelligence (AI)

Status

Epub

ISBN/ISSN/Övrigt

  • ISSN: 1009-5020