Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Meelis Mölder

Forskningsingenjör

Default user image.

Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

Författare

  • Ivan Kovalets
  • Rodolfo Avila
  • Meelis Mölder
  • Sophia Kovalets
  • Anders Lindroth

Summary, in English

A model of (Formula presented.) atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as (Formula presented.) concentrations at the Norunda research station located inside a mixed pine–spruce forest. We present the results of simulations of wind-speed profiles and (Formula presented.) concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323–351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated (Formula presented.) concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of (Formula presented.) is presented and discussed.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2018-02-23

Språk

Engelska

Sidor

103-126

Publikation/Tidskrift/Serie

Boundary-Layer Meteorology

Volym

168

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Meteorology and Atmospheric Sciences

Nyckelord

  • Atmospheric transport
  • Canopy turbulence
  • Carbon transport
  • Micrometeorology
  • Radiocarbon

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0006-8314