Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Marko Scholze

Universitetslektor

Default user image.

Reconciling the Carbon Balance of Northern Sweden Through Integration of Observations and Modelling

Författare

  • Anusha Sathyanadh
  • Guillaume Monteil
  • Marko Scholze
  • Anne Klosterhalfen
  • Hjalmar Laudon
  • Zhendong Wu
  • Christoph Gerbig
  • Wouter Peters
  • Vladislav Bastrikov
  • Mats B. Nilsson
  • Matthias Peichl

Summary, in English

The boreal biome plays an important role in the global carbon cycle. However, current estimates of its sink-source strength and responses to changes in climate are primarily derived from models and thus remain uncertain. A major challenge is the validation of these models at a regional scale since empirical flux estimates are typically confined to ecosystem or continental scales. The Integrated Carbon Observation System (ICOS)-Svartberget atmospheric station (SVB) provides observations including tall tower eddy covariance (EC) and atmospheric concentration measurements that can contribute to such validation in Northern Sweden. Thus, the overall aim of this study was to quantify the carbon balance in Northern Sweden region by integrating land-atmosphere fluxes and atmospheric carbon dioxide (CO2) concentrations. There were three specific objectives. First, to compare flux estimates from four models (VPRM, LPJ-GUESS, ORCHIDEE, and SiBCASA) to tall tower EC measurements at SVB during the years 2016–2018. Second to assess the fluxes' impact on atmospheric CO2 concentrations using a regional transport model. Third, to assess the impact of the drought in 2018. The comparison of estimated concentrations with ICOS observations helped the evaluation of the models' regional scale performance. Both the simulations and observations indicate there were similar reductions in the net CO2 uptake during drought. All the models (except for SiBCASA) and observations indicated the region was a net carbon sink during the 3-year study period. Our study highlights a need to improve vegetation models through comparisons with empirical data and demonstrate the ICOS network's potential utility for constraining CO2 fluxes in the region.

Avdelning/ar

  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system
  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2021-12-16

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Geophysical Research: Atmospheres

Volym

126

Issue

23

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Physical Geography

Nyckelord

  • atmospheric transport model
  • boreal biome
  • FLEXPART
  • net ecosystem exchange
  • tall tower eddy covariance
  • vegetation model

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2169-897X