Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Margareta Johansson

Forskare

Default user image.

The Transition From Stochastic to Deterministic Bacterial Community Assembly During Permafrost Thaw Succession

Författare

  • Stacey J. Doherty
  • Robyn A. Barbato
  • A. Stuart Grandy
  • W. Kelley Thomas
  • Sylvain Monteux
  • Ellen Dorrepaal
  • Margareta Johansson
  • Jessica G. Ernakovich

Summary, in Swedish

The Northern high latitudes are warming twice as fast as the global average, and permafrost has become vulnerable to thaw. Changes to the environment during thaw leads to shifts in microbial communities and their associated functions, such as greenhouse gas emissions. Understanding the ecological processes that structure the identity and abundance (i.e., assembly) of pre- and post-thaw communities may improve predictions of the functional outcomes of permafrost thaw. We characterized microbial community assembly during permafrost thaw using in situ observations and a laboratory incubation of soils from the Storflaket Mire in Abisko, Sweden, where permafrost thaw has occurred over the past decade. In situ observations indicated that bacterial community assembly was driven by randomness (i.e., stochastic processes) immediately after thaw with drift and dispersal limitation being the dominant processes. As post-thaw succession progressed, environmentally driven (i.e., deterministic) processes became increasingly important in structuring microbial communities where homogenizing selection was the only process structuring upper active layer soils. Furthermore, laboratory-induced thaw reflected assembly dynamics immediately after thaw indicated by an increase in drift, but did not capture the long-term effects of permafrost thaw on microbial community dynamics. Our results did not reflect a link between assembly dynamics and carbon emissions, likely because respiration is the product of many processes in microbial communities. Identification of dominant microbial community assembly processes has the potential to improve our understanding of the ecological impact of permafrost thaw and the permafrost–climate feedback.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2020-11-13

Språk

Engelska

Publikation/Tidskrift/Serie

Frontiers in Microbiology

Volym

11

Dokumenttyp

Artikel i tidskrift

Förlag

Frontiers Media S. A.

Ämne

  • Other Earth and Related Environmental Sciences
  • Ecology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1664-302X