Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Lars Nieradzik

Forskare

Default user image.

Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models

Författare

  • Sara M. Blichner
  • Taina Yli-Juuti
  • Tero Mielonen
  • Christopher Pöhlker
  • Eemeli Holopainen
  • Liine Heikkinen
  • Claudia Mohr
  • Paulo Artaxo
  • Samara Carbone
  • Bruno Backes Meller
  • Cléo Quaresma Dias-Júnior
  • Markku Kulmala
  • Tuukka Petäjä
  • Catherine E. Scott
  • Carl Svenhag
  • Lars Nieradzik
  • Moa Sporre
  • Daniel G. Partridge
  • Emanuele Tovazzi
  • Annele Virtanen
  • Harri Kokkola
  • Ilona Riipinen

Summary, in English

Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.

Avdelning/ar

  • Fysiska institutionen
  • LTH profilområde: Aerosoler
  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system
  • Institutionen för naturgeografi och ekosystemvetenskap

Publiceringsår

2024-02-07

Språk

Engelska

Publikation/Tidskrift/Serie

Nature Communications

Volym

15

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Climate Research

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2041-1723