Lars Eklundh
Professor
Fast estimation of spatially dependent temporal trends using Gaussian Markov Random fields
Författare
Summary, in English
There is a need for efficient methods for estimating trends in spatio-temporal Earth Observation data. A suitable model for such data is a space-varying regression model, where the regression coefficients for the spatial locations are dependent. A second order intrinsic Gaussian Markov Random Field prior is used to specify the spatial covariance structure. Model parameters are estimated using the Expectation Maximisation (EM) algorithm, which allows for feasible computation times for relatively large data sets. Results are illustrated with simulated data sets and real vegetation data from the Sahel area in northern Africa. The results indicate a substantial gain in accuracy compared with methods based on independent ordinary least squares regressions for the individual pixels in the data set. Use of the EM algorithm also gives a substantial performance gain over Markov Chain Monte Carlo-based estimation approaches.
Avdelning/ar
- Matematisk statistik
- Institutionen för naturgeografi och ekosystemvetenskap
Publiceringsår
2009
Språk
Engelska
Sidor
2885-2896
Publikation/Tidskrift/Serie
Computational Statistics & Data Analysis
Volym
53
Issue
8
Dokumenttyp
Artikel i tidskrift
Förlag
Elsevier
Ämne
- Probability Theory and Statistics
- Physical Geography
Aktiv
Published
ISBN/ISSN/Övrigt
- ISSN: 0167-9473