Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Lars Eklundh

Professor

Default user image.

Fast estimation of spatially dependent temporal trends using Gaussian Markov Random fields

Författare

  • David Bolin
  • Johan Lindström
  • Lars Eklundh
  • Finn Lindgren

Summary, in English

There is a need for efficient methods for estimating trends in spatio-temporal Earth Observation data. A suitable model for such data is a space-varying regression model, where the regression coefficients for the spatial locations are dependent. A second order intrinsic Gaussian Markov Random Field prior is used to specify the spatial covariance structure. Model parameters are estimated using the Expectation Maximisation (EM) algorithm, which allows for feasible computation times for relatively large data sets. Results are illustrated with simulated data sets and real vegetation data from the Sahel area in northern Africa. The results indicate a substantial gain in accuracy compared with methods based on independent ordinary least squares regressions for the individual pixels in the data set. Use of the EM algorithm also gives a substantial performance gain over Markov Chain Monte Carlo-based estimation approaches.

Avdelning/ar

  • Matematisk statistik
  • Institutionen för naturgeografi och ekosystemvetenskap

Publiceringsår

2009

Språk

Engelska

Sidor

2885-2896

Publikation/Tidskrift/Serie

Computational Statistics & Data Analysis

Volym

53

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Probability Theory and Statistics
  • Physical Geography

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0167-9473