Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Albert Brangarí

Forskare

Default user image.

Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers

Författare

  • Haoran He
  • Jingxiong Zhou
  • Yunqiang Wang
  • Shuo Jiao
  • Xun Qian
  • Yurong Liu
  • Ji Liu
  • Ji Chen
  • Manuel Delgado-Baquerizo
  • Albert C. Brangarí
  • Li Chen
  • Yongxing Cui
  • Haibo Pan
  • Renmao Tian
  • Yuting Liang
  • Wenfeng Tan
  • Raúl Ochoa-Hueso
  • Linchuan Fang

Summary, in English

Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20–50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa–taxa and bacteria–fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria–fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system
  • Mikrobiell biogeokemi i Lund
  • Mikrobiologisk ekologi
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2024-01

Språk

Engelska

Publikation/Tidskrift/Serie

Global Change Biology

Volym

30

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Soil Science

Nyckelord

  • aridity
  • biogeography
  • climate change
  • deep soil
  • microbial biodiversity and function
  • soil depth
  • water heterogeneity

Status

Published

Forskningsgrupp

  • Microbial Biogeochemistry in Lund
  • Microbial Ecology

ISBN/ISSN/Övrigt

  • ISSN: 1354-1013