The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Marko Scholze

Senior lecturer

Default user image.

Modelling terrestrial vegetation dynamics and carbon cycling for an abrupt climatic change event

Author

  • Marko Scholze
  • Wolfgang Knorr
  • Martin Heimann

Summary, in English

Abrupt climatic changes have occurred several times in the past, leading to large-scale modifications of vegetation patterns with important consequences for the global carbon cycle. Dynamic global vegetation models (DGVM) constitute an advanced tool for reconstructing past or predicting future shifts in vegetation distributions in response to climatic change on a global scale. The Lund-Potsdam-Jena (LPJ) model is a DGVM that also includes a complete description of terrestrial-vegetation carbon cycling. Here, it is used for a long-time integration simulating terrestrial ecosystem responses to an abrupt climatic change event. Climate data from an 850-year-long coupled ocean-atmosphere model (ECHAM3/LSG) experiment representing a highly idealized Younger Dryas (c. 12 ka BP) like event are used to study the reactions of the vegetation distribution and changes in terrestrial carbon storage. The main feature of the Younger Dryas simulation experiment is the suppression of the Atlantic thermohaline circulation leading to a significant cooling of the Northern Hemisphere accompanied by a large-scale precipitation decrease. The simulation exhibits a significant shift of the vegetation distribution in the Northern Hemisphere during the cold period in conjunction with a change in global total terrestrial carbon stocks of 180 x 1012 kg C as a consequence of the climatic change event. The response time of the terrestrial biosphere lags the climatic changes by about 250 years for vegetation and 400 years for soil-carbon pools.

Publishing year

2003-05-01

Language

English

Pages

327-333

Publication/Series

Holocene

Volume

13

Issue

3

Document type

Journal article

Publisher

SAGE Publications

Topic

  • Climate Research

Keywords

  • Abrupt climatic change
  • Carbon cycle
  • Modelling
  • Terrestrial biosphere
  • Vegetation dynamics
  • Younger Dryas

Status

Published

ISBN/ISSN/Other

  • ISSN: 0959-6836