The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

photo of Zheng Duan on Lund webpage

Zheng Duan

Associate senior lecturer

photo of Zheng Duan on Lund webpage

Basin-Scale Daily Drought Prediction Using Convolutional Neural Networks in Fenhe River Basin, China

Author

  • Zixuan Chen
  • Guojie Wang
  • Xikun Wei
  • Yi Liu
  • Zheng Duan
  • Yifan Hu
  • Huiyan Jiang

Summary, in English

Drought is a natural disaster that occurs globally and can damage the environment, disrupt agricultural production and cause large economic losses. The accurate prediction of drought can effectively reduce the impacts of droughts. Deep learning methods have shown promise in drought prediction, with convolutional neural networks (CNNs) being particularly effective in handling spatial information. In this study, we employed a deep learning approach to predict drought in the Fenhe River (FHR) basin, taking into account the meteorological conditions of surrounding regions. We used the daily SAPEI (Standardized Antecedent Precipitation Evapotranspiration Index) as the drought evaluation index. Our results demonstrate the effectiveness of the CNN model in predicting drought events 1~10 days in advance. We evaluated the predictions made by the model; the average Nash–Sutcliffe efficiency (NSE) between the predicted and true values for the next 10 days was 0.71. While the prediction accuracy slightly decreased with longer prediction lengths, the model remained stable and effective in predicting heavy drought events that are typically difficult to predict. Additionally, key meteorological variables for drought predictions were identified, and we found that training the CNN model with these key variables led to higher prediction accuracy than training it with all variables. This study approves an effective deep learning approach for daily drought prediction, particularly when considering the meteorological conditions of surrounding regions.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2024

Language

English

Publication/Series

Atmosphere

Volume

15

Issue

2

Document type

Journal article

Publisher

MDPI AG

Topic

  • Oceanography, Hydrology, Water Resources

Keywords

  • CNN
  • deep learning
  • drought
  • prediction

Status

Published

ISBN/ISSN/Other

  • ISSN: 2073-4433