The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Ute Karstens

Researcher

Default user image.

On the validation of the atmospheric model REMO with ISCCP data and precipitation measurements using simple statistics

Author

  • B. Ahrens
  • U. Karstens
  • B. Rockel
  • R. Stuhlmann

Summary, in English

The regional atmospheric model REMO is used to study the energy and water exchange between surface and atmosphere over the Baltic Sea and its catchment area. As a prerequisite for such studies, the model has to be validated. A major part of such a validation is the comparison of simulation results with observational data. In this study the DX product of the International Cloud Climatology Project (ISCCP) and precipitation measurements from 7775 rain gauge stations within the model domain are used for comparisons with the simulated cloud cover and precipitation fields, respectively. The observations are available in this high spatiotemporal resolution for June 1993. To quantify the comparisons of means, variability, and patterns of the data fields simple statistics are used and the significance of the results is determined with resampling methods (Pool Permutation Procedure and Bootstrap-t). The conclusion is that simulated and observed means of the fields are not different at the 5% significance level. The determined variability of the fields is also in good agreement except the space variability in cloud cover. Time mean and anomaly patterns are in good coincidence in case of the comparisons of cloud cover fields, but in reduced coincidence in case of precipitation.

Publishing year

1998

Language

English

Pages

127-142

Publication/Series

Meteorology and Atmospheric Physics

Volume

68

Issue

3-4

Document type

Journal article

Publisher

Springer

Topic

  • Meteorology and Atmospheric Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0177-7971