The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Ute Karstens

Researcher

Default user image.

Carbon monoxide : a quantitative tracer for fossil fuel CO2?

Author

  • U. Gamnitzer
  • Ute Karstens
  • B. Kromer
  • R.E.M. Neubert
  • H.A.J. Meijer
  • H. Schroeder
  • I. Levin

Summary, in English

Carbon monoxide (CO), carbon dioxide (CO2), and radiocarbon (14CO2) measurements have been made in Heidelberg from 2001 to 2004 in order to determine the regional fossil fuel CO2 component and to investigate the application of CO as a quantitative tracer for fossil fuel CO2 (CO2(foss)). The observations were compared with model estimates simulated with the regional transport model REMO at 0.5° × 0.5° resolution in Europe for 2002. These estimates are based on two available emissions inventories for CO and CO2(foss) and simplified atmospheric chemistry of CO. Both emissions inventories appear to overestimate fossil fuel emissions in the Heidelberg catchment area, in particular in summer and autumn by up to a factor of 2. Nevertheless, during meteorological conditions with high local source influence the CO/CO2(foss) emission ratios compared well with the observed atmospheric CO/CO2(foss) ratios. For a larger catchment area of several 100 km the observed CO/CO2(foss) ratio compared within better than 25% with the ratios derived from model simulations that take the transport from the sites of emission to the measurement station into account. Non-fossil-fuel CO emissions, production by volatile organic compounds, and oxidation, as well as soil uptake, turned out to add significant uncertainty to the application of CO as a quantitative fossil fuel CO2 surrogate tracer, so that 14CO2 measurements seem to be indispensable for reliable estimates of fossil fuel CO2 over the European continent.

Publishing year

2006

Language

English

Publication/Series

Journal of Geophysical Research: Atmospheres

Volume

111

Issue

22

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 2169-8996
  • D22302