The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Tom Pugh

Thomas Pugh

Senior lecturer

Tom Pugh

A Large Committed Long-Term Sink of Carbon due to Vegetation Dynamics

Author

  • T. A.M. Pugh
  • C. D. Jones
  • C. Huntingford
  • C. Burton
  • A. Arneth
  • V. Brovkin
  • P. Ciais
  • M. Lomas
  • E. Robertson
  • S. L. Piao
  • S. Sitch

Summary, in English

The terrestrial biosphere shows substantial inertia in its response to environmental change. Hence, assessments of transient changes in ecosystem properties to 2100 do not capture the full magnitude of the response realized once ecosystems reach an effective equilibrium with the changed environmental boundary conditions. This equilibrium state can be termed the committed state, in contrast to a transient state in which the ecosystem is in disequilibrium. The difference in ecosystem properties between the transient and committed states represents the committed change yet to be realized. Here an ensemble of dynamic global vegetation model simulations was used to assess the changes in tree cover and carbon storage for a variety of committed states, relative to a preindustrial baseline, and to attribute the drivers of uncertainty. Using a subset of simulations, the committed changes in these variables post-2100, assuming climate stabilization, were calculated. The results show large committed changes in tree cover and carbon storage, with model disparities driven by residence time in the tropics, and residence time and productivity in the boreal. Large changes remain ongoing well beyond the end of the 21st century. In boreal ecosystems, the simulated increase in vegetation carbon storage above preindustrial levels was 20–95 Pg C at 2 K of warming, and 45–201 Pg C at 5 K, of which 38–155 Pg C was due to expansion in tree cover. Reducing the large uncertainties in long-term commitment and rate-of-change of terrestrial carbon uptake will be crucial for assessments of emissions budgets consistent with limiting climate change.

Publishing year

2018-10

Language

English

Pages

1413-1432

Publication/Series

Earth's Future

Volume

6

Issue

10

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Environmental Sciences

Keywords

  • carbon cycling
  • committed sink
  • DGVM
  • ESM
  • vegetation

Status

Published

ISBN/ISSN/Other

  • ISSN: 2328-4277