The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Tom Pugh

Thomas Pugh

Senior lecturer

Tom Pugh

Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink

Author

  • T. A M Pugh
  • C. Müller
  • A. Arneth
  • V. Haverd
  • B. Smith

Summary, in English

Primary productivity of terrestrial vegetation is expected to increase under the influence of increasing atmospheric carbon dioxide concentrations ([CO2]). Depending on the fate of such additionally fixed carbon, this could lead to an increase in terrestrial carbon storage, and thus a net terrestrial sink of atmospheric carbon. Such a mechanism is generally believed to be the primary global driver behind the observed large net uptake of anthropogenic CO2 emissions by the biosphere. Mechanisms driving CO2 uptake in the Terrestrial Biosphere Models (TBMs) used to attribute and project terrestrial carbon sinks, including that from increased [CO2], remain in large parts unchanged since those models were conceived two decades ago. However, there exists a large body of new data and understanding providing an opportunity to update these models, and directing towards important topics for further research. In this review we highlight recent developments in understanding of the effects of elevated [CO2] on photosynthesis, and in particular on the fate of additionally fixed carbon within the plant with its implications for carbon turnover rates, on the regulation of photosynthesis in response to environmental limitations on in-plant carbon sinks, and on emergent ecosystem responses. We recommend possible avenues for model improvement and identify requirements for better data on core processes relevant to the understanding and modelling of the effect of increasing [CO2] on the global terrestrial carbon sink.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2016

Language

English

Pages

3-15

Publication/Series

Journal of Plant Physiology

Volume

203

Document type

Journal article review

Publisher

Gustav Fischer Verlag

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 0176-1617