The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Thomas Holst

Researcher

Default user image.

Volatile organic compound fluxes in a subarctic peatland and lake

Author

  • Roger Seco
  • Thomas Holst
  • Mikkel Sillesen Matzen
  • Andreas Westergaard-Nielsen
  • Tao Li
  • Tihomir Simin
  • Joachim Jansen
  • Patrick Crill
  • Thomas Friborg
  • Janne Rinne
  • Riikka Rinnan

Summary, in English

Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate.We measured the ecosystem-level surface-atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in northern Sweden during two contrasting periods: the peak growing season (mid-July) and the senescent period post-growing season (September-October). In July, the fen was a net source of methanol, acetaldehyde, acetone, dimethyl sulfide, isoprene, and monoterpenes. All of these VOCs showed a diel cycle of emission with maxima around noon and isoprene dominated the fluxes (93±22 μmolm-2 d-1, mean±SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature (Q10 = 14:5) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to-6:7±2:8 μmolm-2 d-1 for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to -19±1:3 μmolm-2 d-1 of acetone in July and up to-8:5± 2:3 μmolm-2 d-1 of acetaldehyde in September. The deposition of both carbonyl compounds correlated with their atmospheric mixing ratios, with deposition velocities of-0:23± 0:01 and-0:68±0:03 cm s-1 for acetone and acetaldehyde, respectively. Even though these VOC fluxes represented less than 0.5%and less than 5%of the CO2 and CH4 net carbon ecosystem exchange, respectively, VOCs alter the oxidation capacity of the atmosphere. Thus, understanding the response of their emissions to climate change is important for accurate prediction of the future climatic conditions in this rapidly warming area of the planet.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2020

Language

English

Pages

13399-13416

Publication/Series

Atmospheric Chemistry and Physics

Volume

20

Issue

21

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1680-7316