
Lars Eklundh
Professor

Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing
Author
Summary, in English
The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with process-based vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average, well simulated but too homogeneous among vegetation types when compared with field estimates using forest inventory data.
Department/s
- Dept of Physical Geography and Ecosystem Science
Publishing year
2009
Language
English
Pages
316-324
Publication/Series
Ambio: a Journal of Human Environment
Volume
38
Issue
6
Document type
Journal article
Publisher
Springer
Topic
- Physical Geography
Status
Published
ISBN/ISSN/Other
- ISSN: 0044-7447