Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997-2010 using in situ and high-resolution satellite data

Author:
  • Torbern Tagesson
  • Mikhail Mastepanov
  • Meelis Mölder
  • Mikkel P. Tamstorf
  • Lars Eklundh
  • Benjamin Smith
  • Charlotte Sigsgaard
  • Magnus Lund
  • Anna Ekberg
  • Julie Maria Falk
  • Thomas Friborg
  • Torben Christensen
  • Lena Ström
Publishing year: 2013
Language: English
Publication/Series: Tellus. Series B: Chemical and Physical Meteorology
Volume: 65
Document type: Journal article
Publisher: Taylor & Francis

Abstract english

Methane (CH4) fluxes 1997-2010 were studied by combining remotely sensed normalised difference water index (NDWI) with in situ CH4 fluxes from Rylekaerene, a high-Arctic wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. In situ CH4 fluxes were measured using the closed-chamber technique. Regression models between in situ CH4 fluxes and environmental variables [soil temperature (T-soil), water table depth (WtD) and active layer (AL) thickness] were established for different temporal and spatial scales. The relationship between in situ WtD and remotely sensed NDWI was also studied. The regression models were combined and evaluated against in situ CH4 fluxes. The models including NDWI as the input data performed on average slightly better [root mean square error (RMSE) = 1.56] than the models without NDWI (RMSE = 1.67), and they were better in reproducing CH4 flux variability. The CH4 flux model that performed the best included exponential relationships against temporal variation in T-soil and AL, an exponential relationship against spatial variation in WtD and a linear relationship between WtD and remotely sensed NDWI (RMSE = 1.50). There were no trends in modelled CH4 flux budgets between 1997 and 2010. Hence, during this period there were no trends in the soil temperature at 10 cm depth and NDWI.

Keywords

  • Physical Geography
  • NDWI
  • methane
  • Arctic
  • Landsat
  • climate change

Other

Published
  • ISSN: 0280-6509
E-mail: lars [dot] eklundh [at] nateko [dot] lu [dot] se

Professor

Dept of Physical Geography and Ecosystem Science

+46 46 222 96 55

454

16

Teaching staff

Dept of Physical Geography and Ecosystem Science

16

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data

Accessibility statement