The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Hongxiao Jin

Hongxiao Jin

Researcher

Hongxiao Jin

Drone-based hyperspectral and thermal imagery for quantifying upland rice productivity and water use efficiency after biochar application

Author

  • Hongxiao Jin
  • Christian Josef Köppl
  • Benjamin M.C. Fischer
  • Johanna Rojas-Conejo
  • Mark S. Johnson
  • Laura Morillas
  • Steve W. Lyon
  • Ana M. Durán-Quesada
  • Andrea Suárez-Serrano
  • Stefano Manzoni
  • Monica Garcia

Summary, in English

Miniature hyperspectral and thermal cameras onboard lightweight unmanned aerial vehicles (UAV) bring new opportunities for monitoring land surface variables at unprecedented fine spatial resolution with acceptable accuracy. This research applies hyperspectral and thermal imagery from a drone to quantify upland rice productivity and water use efficiency (WUE) after biochar application in Costa Rica. The field flights were conducted over two experimental groups with bamboo biochar (BC1) and sugarcane biochar (BC2) amendments and one control (C) group without biochar application. Rice canopy biophysical variables were estimated by inverting a canopy radiative transfer model on hyperspectral reflectance. Variations in gross primary productivity (GPP) and WUE across treatments were estimated using light-use efficiency and WUE models respectively from the normalized difference vegetation index (NDVI), canopy chlorophyll content (CCC), and evapotranspiration rate. We found that GPP was increased by 41.9 ± 3.4% in BC1 and 17.5 ± 3.4% in BC2 versus C, which may be explained by higher soil moisture after biochar application, and consequently significantly higher WUEs by 40.8 ± 3.5% in BC1 and 13.4 ± 3.5% in BC2 compared to C. This study demonstrated the use of hyperspectral and thermal imagery from a drone to quantify biochar effects on dry cropland by integrating ground measurements and physical models.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2021-05-02

Language

English

Publication/Series

Remote Sensing

Volume

13

Issue

10

Document type

Journal article

Publisher

MDPI AG

Topic

  • Physical Geography
  • Remote Sensing

Keywords

  • Biochar
  • Gross primary productivity (GPP)
  • Hyperspectral and thermal imagery
  • Unmanned aerial vehicle (UAV)
  • Upland rice
  • Water use efficiency (WUE)

Status

Published

ISBN/ISSN/Other

  • ISSN: 2072-4292