The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Babak Mohammadi

Doctoral student

Default user image.

Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models


  • Mohammed Abdallah
  • Babak Mohammadi
  • Modathir A. Modathir
  • Abubaker Omer
  • Majid Cheraghalizadeh
  • Mohamed E.E. Eldow
  • Zheng Duan

Summary, in English

Study region: Two hyper-arid regions (Atbara and Kassala stations) in Sudan. Study focus: The study aims to evaluate the potential of the D-vine Copula-based quantile regression (DVQR) model for estimating daily ETo during 2000–2015 based on various input structures. Further, the DVQR model was compared with Multivariate Linear quantile regression (MLQR), Bayesians Model Averaging quantile regression (BMAQR), Empirical Models (EMMs), and Classical Machine Learning (CML). Besides, the CML models including Random Forest (RF), Support Vector Machine (SVM), Extreme Learning Machine (ELM), Extreme Gradient Boosting (XGBoost), and M5 Model Tree (M5Tree) were employed. New hydrological insights for the region: The original EMMs showed poor performance, which improved after calibration techniques. The DVQR, MLQR, and BMAQR models showed better performance than the calibrated EMMs. However, the DVQR model exhibited the highest accuracy than the MLQR and BMAQR models over two study sites. The M5Tree, SVM, and XGBoost models perfumed better than ELM and RF models at both study sites. The DVQR and XGBoost models showed equivalent performance (R2, NSE, and WIA > 0.99, MAE, and RMSE < 0.2) to the M5Tree and SVM models, but they had significantly more accuracy than the calibrated EMMs, MLQR, BMAQR, ELM, and RF models in two hyper-arid regions. Overall, the high dimensional DVQR model is recommended as a promising alternative technique for estimating daily ETo in hyper-arid climate conditions around the world.


  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year





Journal of Hydrology: Regional Studies



Document type

Journal article




  • Physical Geography
  • Water Engineering
  • Oceanography, Hydrology, Water Resources


  • Empirical models
  • Hyper-arid region
  • Machine learning
  • Quantile regression
  • Reference evapotranspiration
  • Sudan




  • ISSN: 2214-5818