Babak Mohammadi
Doctoral student
Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils
Author
Summary, in English
Field capacity (FC) and permanent wilting point (PWP) are two important properties of the soil when the soil moisture is concerned. Since the determination of these parameters is expensive and time-consuming, this study aims to develop and evaluate a new hybrid of artificial neural network model coupled with a whale optimization algorithm (ANN-WOA) as a meta-heuristic optimization tool in defining the FC and the PWP at the basin scale. The simulated results were also compared with other core optimization models of ANN and multilinear regression (MLR). For this aim, a set of 217 soil samples were taken from different regions located across the West and East Azerbaijan provinces in Iran, partially covering four important basins of Lake Urmia, Caspian Sea, Persian Gulf-Oman Sea, and Central-Basin of Iran. Taken samples included portion of clay, sand, and silt together with organic matter, which were used as independent variables to define the FC and the PWP. A 80–20 portion of the randomly selected independent and dependent variable sets were used in calibration and validation of the predefined models. The most accurate predictions for the FC and PWP at the selected stations were obtained by the hybrid ANN-WOA models, and evaluation criteria at the validation phases were obtained as 2.87%, 0.92, and 2.11% respectively for RMSE, R2, and RRMSE for the FC, and 1.78%, 0.92, and 10.02% respectively for RMSE, R2, and RRMSE for the PWP. It is concluded that the organic matter is the most important variable in prediction of FC and PWP, while the proposed ANN-WOA model is an efficient approach in defining the FC and the PWP at the basin scale.
Publishing year
2020-04-01
Language
English
Pages
13131-13141
Publication/Series
Environmental Science and Pollution Research
Volume
27
Issue
12
Document type
Journal article
Publisher
Springer
Topic
- Meteorology and Atmospheric Sciences
- Environmental Sciences
Keywords
- Hybrid model
- Hydropedology
- Meta-heuristic algorithm
- Soil moisture
Status
Published
ISBN/ISSN/Other
- ISSN: 0944-1344