Albert Brangarí
Researcher
Higher resistance and resilience of bacterial growth to drought in grasslands with historically lower precipitation
Author
Summary, in English
Climate change is expected to alter precipitation regimes, resulting in longer periods of drought and heavier precipitation events. Even though the direct effect of water availability on soil microbial processes is well documented, the influence of precipitation legacy on microbial resistance and resilience to drought remains unclear. Using soils from a natural mean annual precipitation (MAP) gradient (∼550–950 mm yr−1) equipped with long-term (>8 yr) rain-out shelters, we investigated how the history of precipitation influenced microbial ‘resistance’ (tolerance to drying) and ‘resilience’ (ability to recover growth rates following rewetting) to drought. We found that bacterial growth was more resistant and resilient to drought in sites with lower MAP. In contrast, the precipitation-reduction treatments had no detectable influence on microbial drought resistance or resilience. The microbial carbon-use efficiency immediately after rewetting was higher in soils from lower precipitation sites. In contrast, the steady-state microbial growth rates and respiration (under standardized moisture conditions) were consistent along the precipitation gradient. The variation in microbial drought resistance and resilience across the precipitation gradient was linked to the microbial community structure. Taken together, our results suggest that historical precipitation regimes – and the associated differences in exposure to drought – had selected for bacterial communities that were more resistant and resilient to drought.
Department/s
- Microbial Biogeochemistry in Lund
- MEMEG
- Microbial Ecology
- MERGE: ModElling the Regional and Global Earth system
- BECC: Biodiversity and Ecosystem services in a Changing Climate
Publishing year
2023-02
Language
English
Publication/Series
Soil Biology and Biochemistry
Volume
177
Document type
Journal article
Publisher
Elsevier
Topic
- Soil Science
Keywords
- Drying-rewetting
- Legacy effect
- Microbial growth
- Moisture dependence
- Precipitation gradient
Status
Published
Project
- Can active land-use management be used to make soil microbial functions resilient to drought?
Research group
- Microbial Biogeochemistry in Lund
- Microbial Ecology
ISBN/ISSN/Other
- ISSN: 0038-0717