The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Thomas Holst

Researcher

Default user image.

Variability of BVOC Emissions from Commercially Used Willow (Salix spp.) Varieties

Author

  • Tomas Karlsson
  • Riikka Rinnan
  • Thomas Holst

Summary, in English

Willow (Salix spp.) trees are commonly used in short rotation coppices (SRC) to produce renewable energy. However, these plants are also known to emit high concentrations of biogenic volatile organic compounds (BVOCs), which have a large influence on air quality. Many different clones of commercially used Salix varieties exist today, but only a few studies have focused on BVOC emissions from these newer varieties. In this study, four varieties commercially propagated for biofuel production have been studied on a leaf-scale in the southern part of Sweden. The trees had either their first or second growing season, and measurements on BVOC emissions were done during the growing season in 2017 from the end of May to the beginning of September. Isoprene was the dominant emitted compound for all varieties but the average emission amongst varieties varied from 4.00 to 12.66 µg gdw−1 h−1. Average monoterpene (MT) (0.78–1.87 µg gdw−1 h−1) and sesquiterpene (SQT) emission rates (0.22–0.57 µg gdw−1 h−1) differed as well among the varieties. Besides isoprene, other compounds like ocimene, linalool and caryophyllene also showed a response to light but not for all varieties. Younger plants had several times higher emissions of non-isoprenoids (other VOCs) than the corresponding 1-year-old trees. The conclusions from this study show that the choice of variety can have a large impact on the regional BVOC emission budget. Genetics, together with stand age, should be taken into account when modelling BVOC emissions on a regional scale, for example, for air quality assessments.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2020-04-07

Language

English

Publication/Series

Atmosphere

Volume

11

Issue

4

Document type

Journal article

Publisher

MDPI AG

Topic

  • Physical Geography

Status

Published

Project

  • Impact of a Salix biofuel plantation on the emission of Biogenic Volatile Organic Compounds and the production of Secondary
  • The variability in Salix BVOC emissions and possible consequences for managed SRC plantations

ISBN/ISSN/Other

  • ISSN: 2073-4433