The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Marko Scholze

Senior lecturer

Default user image.

On the capability of Monte Carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models


  • T. Ziehn
  • Marko Scholze
  • W. Knorr

Summary, in English

Terrestrial ecosystem models (TEMs) contain the coupling of many biogeochemical processes with a large number of parameters involved. In many cases those parameters are highly uncertain. In order to reduce those uncertainties, parameter estimation methods can be applied, which allow the model to be constrained against observations. We compare the performance and results of two such parameter estimation techniques - the Metropolis algorithm (MA) which is a Markov Chain Monte Carlo (MCMC) method and the adjoint approach as it is used in the Carbon Cycle Data Assimilation System (CCDAS). Both techniques are applied here to derive the posterior probability density function (PDF) for 19 parameters of the Biosphere Energy Transfer and Hydrology (BETHY) scheme. We also use the MA to sample the posterior parameter distribution from the adjoint inversion. This allows us to assess if the commonly made assumption in variational data assimilation, that everything is normally distributed, holds. The comparison of the posterior parameter PDF derived by both methods shows that in most cases an approximation of the PDF by a normal distribution as used by the adjoint approach is a valid assumption. The results also indicate that the global minimum has been identified by both methods for the given set up. However, the adjoint approach outperforms the MA by several orders of magnitude in terms of computational time. Both methods show good agreement in the PDF of estimated net carbon fluxes for the decades of the 1980s and 1990s.

Publishing year







Global Biogeochemical Cycles



Document type

Journal article


American Geophysical Union (AGU)


  • Physical Geography




  • ISSN: 0886-6236