The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Marko Scholze

Senior lecturer

Default user image.

Consistent assimilation of multiple data streams in a carbon cycle data assimilation system

Author

  • Natasha MacBean
  • Philippe Peylin
  • Frédéric Chevallier
  • Marko Scholze
  • Gregor Schürmann

Summary, in English

Data assimilation methods provide a rigorous statistical framework for constraining parametric uncertainty in land surface models (LSMs), which in turn helps to improve their predictive capability and to identify areas in which the representation of physical processes is inadequate. The increase in the number of available datasets in recent years allows us to address different aspects of the model at a variety of spatial and temporal scales. However, combining data streams in a DA system is not a trivial task. In this study we highlight some of the challenges surrounding multiple data stream assimilation for the carbon cycle component of LSMs. We give particular consideration to the assumptions associated with the type of inversion algorithm that are typically used when optimising global LSMs-namely, Gaussian error distributions and linearity in the model dynamics. We explore the effect of biases and inconsistencies between the observations and the model (resulting in non-Gaussian error distributions), and we examine the difference between a simultaneous assimilation (in which all data streams are included in one optimisation) and a step-wise approach (in which each data stream is assimilated sequentially) in the presence of non-linear model dynamics. In addition, we perform a preliminary investigation into the impact of correlated errors between two data streams for two cases, both when the correlated observation errors are included in the prior observation error covariance matrix, and when the correlated errors are ignored. We demonstrate these challenges by assimilating synthetic observations into two simple models: the first a simplified version of the carbon cycle processes represented in many LSMs and the second a non-linear toy model. Finally, we provide some perspectives and advice to other land surface modellers wishing to use multiple data streams to constrain their model parameters.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2016-10-04

Language

English

Pages

3569-3588

Publication/Series

Geoscientific Model Development

Volume

9

Issue

10

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Climate Research

Status

Published

ISBN/ISSN/Other

  • ISSN: 1991-959X