The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Tim Arnold

Tim Arnold

Associate Professor

Tim Arnold

Boreas : A Sample Preparation-Coupled Laser Spectrometer System for Simultaneous High-Precision in Situ Analysis of δ13C and δ2H from Ambient Air Methane

Author

  • Chris Rennick
  • Tim Arnold
  • Emmal Safi
  • Alice Drinkwater
  • Caroline Dylag
  • Eric Mussell Webber
  • Ruth Hill-Pearce
  • David R. Worton
  • Francesco Bausi
  • Dave Lowry

Summary, in English

We present a new instrument, "Boreas", a cryogen-free methane (CH4) preconcentration system coupled to a dual-laser spectrometer for making simultaneous measurements of δ13C(CH4) and δ2H(CH4) in ambient air. Excluding isotope ratio scale uncertainty, we estimate a typical standard measurement uncertainty for an ambient air sample of 0.07‰ for δ13C(CH4) and 0.9‰ for δ2H(CH4), which are the lowest reported for a laser spectroscopy-based system and comparable to isotope ratio mass spectrometry. We trap CH4 (∼1.9 μmol mol-1) from ∼5 L of air onto the front end of a packed column, subsequently separating CH4 from interferences using a controlled temperature ramp with nitrogen (N2) as the carrier gas, before eluting CH4 at ∼550 μmol mol-1. This processed sample is then delivered to an infrared laser spectrometer for measuring the amount fractions of 12CH4, 13CH4, and 12CH3D isotopologues. We calibrate the instrument using a set of gravimetrically prepared amount fraction primary reference materials directly into the laser spectrometer that span a range of 500-626 μmol mol-1 (CH4 in N2) made from a single pure CH4 source that has been isotopically characterized for δ13C(CH4) by IRMS. Under the principle of identical treatment, a compressed ambient air sample is used as a working standard and measured between air samples, from which a final calibrated isotope ratio is calculated. Finally, we make automated measurements of both δ13C(CH4) and δ2H(CH4) in over 200 ambient air samples and demonstrate the application of Boreas for deployment to atmospheric monitoring sites.

Publishing year

2021-07-27

Language

English

Pages

10141-10151

Publication/Series

Analytical Chemistry

Volume

93

Issue

29

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Status

Published

ISBN/ISSN/Other

  • ISSN: 0003-2700