The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Tom Pugh

Thomas Pugh

Senior lecturer

Tom Pugh

Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest

Author

  • B. Langford
  • P. K. Misztal
  • E. Nemitz
  • B. Davison
  • C. Helfter
  • T. A.M. Pugh
  • A. R. MacKenzie
  • S. F. Lim
  • C. N. Hewitt

Summary, in English

As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April-May and June-July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon) of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. There was no evidence for nocturnal monoterpene emissions and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90%) of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m-2 s-1 PAR, were 1.6 mg m-2 h-1and 0.46mg m-2 h-1 respectively, which was 4 and 1.8 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.

Publishing year

2010

Language

English

Pages

8391-8412

Publication/Series

Atmospheric Chemistry and Physics

Volume

10

Issue

17

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1680-7316