The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Lars Eklundh


Default user image.

Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status


  • Patryk Lakomiec
  • Jutta Holst
  • Thomas Friborg
  • Patrick Crill
  • Niklas Rakos
  • Natascha Kljun
  • Per Ola Olsson
  • Lars Eklundh
  • Andreas Persson
  • Janne Rinne

Summary, in English

The Arctic is exposed to even faster temperature changes than most other areas on Earth. Constantly increasing temperature will lead to thawing permafrost and changes in the methane (CH4) emissions from wetlands. One of the places exposed to those changes is the Abisko-Stordalen Mire in northern Sweden, where climate and vegetation studies have been conducted since the 1970s. In our study, we analyzed field-scale methane emissions measured by the eddy covariance method at Abisko-Stordalen Mire for 3 years (2014-2016). The site is a subarctic mire mosaic of palsas, thawing palsas, fully thawed fens, and open water bodies. A bimodal wind pattern prevalent at the site provides an ideal opportunity to measure mire patches with different permafrost status with one flux measurement system. The flux footprint for westerly winds was dominated by elevated palsa plateaus, while the footprint was almost equally distributed between palsas and thawing bog-like areas for easterly winds. As these patches are exposed to the same climatic and weather conditions, we analyzed the differences in the responses of their methane emission for environmental parameters. The methane fluxes followed a similar annual cycle over the 3 study years, with a gentle rise during spring and a decrease during autumn, without emission bursts at either end of the ice-free season. The peak emission during the ice-free season differed significantly for the two mire areas with different permafrost status: the palsa mire emitted 19ĝ€¯mg-Cĝ€¯m-2ĝ€¯d-1 and the thawing wet sector 40ĝ€¯mg-Cĝ€¯m-2ĝ€¯d-1. Factors controlling the methane emission were analyzed using generalized linear models. The main driver for methane fluxes was peat temperature for both wind sectors. Soil water content above the water table emerged as an explanatory variable for the 3 years for western sectors and the year 2016 in the eastern sector. The water table level showed a significant correlation with methane emission for the year 2016 as well. Gross primary production, however, did not show a significant correlation with methane emissions. Annual methane emissions were estimated based on four different gap-filing methods. The different methods generally resulted in very similar annual emissions. The mean annual emission based on all models was 3.1ĝ€¯±ĝ€¯0.3ĝ€¯g-Cĝ€¯m-2ĝ€¯a-1 for the western sector and 5.5ĝ€¯±ĝ€¯0.5ĝ€¯g-Cĝ€¯m-2ĝ€¯a-1 for the eastern sector. The average annual emissions, derived from these data and a footprint climatology, were 2.7ĝ€¯±ĝ€¯0.5 and 8.2ĝ€¯±ĝ€¯1.5ĝ€¯g-Cĝ€¯m-2ĝ€¯a-1 for the palsa and thawing surfaces, respectively. Winter fluxes were relatively high, contributing 27ĝ€¯%-45ĝ€¯% to the annual emissions.


  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Dept of Physical Geography and Ecosystem Science
  • ICOS Sweden
  • MERGE: ModElling the Regional and Global Earth system
  • Centre for Environmental and Climate Science (CEC)
  • eSSENCE: The e-Science Collaboration
  • Centre for Geographical Information Systems (GIS Centre)

Publishing year












Document type

Journal article


Copernicus GmbH


  • Physical Geography




  • MEthane goes MObile - MEasurements and MOdelling


  • ISSN: 1726-4170