The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Zhengyao Lu

Researcher

Default user image.

The changes in ENSO-induced tropical Pacific precipitation variability in the past warm and cold climates from the EC-Earth simulations

Author

  • Zixuan Han
  • Qiong Zhang
  • Qin Wen
  • Zhengyao Lu
  • Guolin Feng
  • Tao Su
  • Qiang Li
  • Qiang Zhang

Summary, in English

The El Niño-Southern Oscillation (ENSO) is one of the most significant climate variability signals. Studying the changes in ENSO-induced precipitation variability (ENSO precipitation) in the past climate offers a possibility to a better understanding of how they may change under future climate conditions. This study uses simulations performed with the European community Earth-System Model (EC-Earth) to investigate the relative contributions of dynamic effect (the circulation anomalies together with the climatological specific humidity) and thermodynamic effect (the specific humidity anomalies together with the climatological circulation) on the changes in ENSO precipitation in the past warm and cold climates, represented by the Pliocene and the Last Glacial Maximum (LGM), respectively. The results show that the changes in ENSO precipitation are intensified (weakened) over the tropical western Pacific but weakened (intensified) over the tropical central Pacific in Pliocene (LGM) compared with the pre-industrial (PI) simulation. Based on the decomposed moisture budget equation, these changes in ENSO precipitation patterns are highly related to the dynamic effect. The mechanism can be understood as follows: the zonal gradient of the mean sea surface temperature (SST) over the tropical Indo-Pacific is increased (reduced) during the Pliocene (LGM), leading to the strengthening (weakening) of Pacific Walker Circulation as well as a westward (eastward) shift. In the Pliocene, the westward shift of Walker Circulation results in an increased (decreased) ENSO-induced low-level vertical velocity variability in the tropical western Pacific (central Pacific), and, in turn, favoring convergent (divergent) moisture transport through a dynamic process, and then causing intensified (weakened) ENSO precipitation there. The opposite mechanism exists in LGM. These results suggest that changes in the zonal SST gradient over tropical Indo-Pacific under different climate conditions determine the changes in ENSO precipitation through a dynamic process.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2020-08

Language

English

Pages

503-519

Publication/Series

Climate Dynamics

Volume

55

Issue

3-4

Document type

Journal article

Publisher

Springer

Topic

  • Climate Research

Keywords

  • Dynamic and thermodynamic contribution
  • El Niño-Southern Oscillation
  • Precipitation variability
  • The Last Glacial Maximum
  • The Pliocene
  • Walker circulation
  • Zonal SST gradient

Status

Published

ISBN/ISSN/Other

  • ISSN: 0930-7575