The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Wenxin Zhang

Researcher

Default user image.

Water use efficiency control for a maize field under mulched drip irrigation

Author

  • Chunyu Wang
  • Sien Li
  • Mousong Wu
  • Wenxin Zhang
  • Hongxing He
  • Danni Yang
  • Siyu Huang
  • Zhenyu Guo
  • Xiuli Xing

Summary, in English

Agricultural ecosystem water use efficiency (WUE) is an important indicator reflecting carbon-water coupling, but its control mechanisms in managed fields remain unclear. In order to reveal the influencing factors of WUE in the agricultural field under mulched drip irrigation (DM), we carried out the 8-year continuous observations in a maize field from Northwestern China. The structural equation model, relative importance analysis and principal component analysis were used to quantify the regulation effects of environmental and biological factors on WUE at different time scales, in different growth stages and under different hydrothermal conditions. The results showed that annual WUE varied between 2.18 g C Kg−1 H2O and 3.60 g C Kg−1 H2O, with a multi-year mean of 2.91 g C Kg−1 H2O. The total effects of air temperature on the daily WUE in the whole growth period, the vegetative growth stage, the warm and dry years, the cold and wet years, and the warm and wet years were the largest, with values of 0.61, 0.80, 0.70, 0.70 and 0.91 respectively. However, vapor pressure deficit and net radiation had the largest total effect in the cold and dry years (−0.63) and the reproductive growth stage (−0.49), respectively. Leaf biomass played a leading role in regulating the daily and interannual WUE, and the relative importance of leaf biomass to WUE in the vegetative growth stage was up to 75 %. In the warm and wet years, the relative importance of root biomass to WUE was 33 %, slightly higher than that of leaf biomass (31 %). At the same time, we found that Ta has the potential to increase WUE under future climate warming. Our results improve the understanding of carbon-water coupling mechanisms and provide important enlightenment on how crop ecosystems should adapt to future climate change.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2023-01-20

Language

English

Publication/Series

Science of the Total Environment

Volume

857

Document type

Journal article

Publisher

Elsevier

Topic

  • Agricultural Science

Keywords

  • Biomass
  • Ecosystem water use efficiency
  • Environmental factors
  • Relative importance analysis
  • Structural equation model

Status

Published

ISBN/ISSN/Other

  • ISSN: 0048-9697