The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Ute Karstens

Researcher

Default user image.

High resolution modeling of CO2 over Europe: Implications for representation errors of satellite retrievals

Author

  • D. Pillai
  • C. Gerbig
  • J. Marshall
  • R. Ahmadov
  • R. Kretschmer
  • T. Koch
  • U. Karstens

Summary, in English

Satellite retrievals for column CO2 with better spatial and temporal sampling are expected to improve the current surface flux estimates of CO2 via inverse techniques. However, the spatial scale mismatch between remotely sensed CO2 and current generation inverse models can induce representation errors, which can cause systematic biases in flux estimates. This study is focused on estimating these representation errors associated with utilization of satellite measurements in global models with a horizontal resolution of about 1 degree or less. For this we used simulated CO2 from the high resolution modeling framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a weather forecasting model at 10×10 km2 horizontal resolution. Sub-grid variability of column averaged CO2, i.e. the variability not resolved by global models, reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results indicate that orography plays an important role. Using sub-grid variability of orography and CO 2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated that could explain about 50% of the spatial patterns in the systematic (bias or correlated error) component of representation error in column and near-surface CO2 during day-and night-times. These findings give hints for a parameterization of representation error which would allow for the representation error to taken into account in inverse models or data assimilation systems.

Publishing year

2010

Language

English

Pages

83-94

Publication/Series

Atmospheric Chemistry and Physics

Volume

10

Issue

1

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1680-7316