Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Paul Miller

Universitetslektor

Default user image.

Characterizing Performance of Freshwater Wetland Methane Models Across Time Scales at FLUXNET-CH4 Sites Using Wavelet Analyses

Författare

  • Zhen Zhang
  • Sheel Bansal
  • Kuang Yu Chang
  • Etienne Fluet-Chouinard
  • Kyle Delwiche
  • Mathias Goeckede
  • Adrian Gustafson
  • Sara Knox
  • Antti Leppänen
  • Licheng Liu
  • Jinxun Liu
  • Avni Malhotra
  • Tiina Markkanen
  • Gavin McNicol
  • Joe R. Melton
  • Paul A. Miller
  • Changhui Peng
  • Maarit Raivonen
  • William J. Riley
  • Oliver Sonnentag
  • Tuula Aalto
  • Rodrigo Vargas
  • Wenxin Zhang
  • Qing Zhu
  • Qiuan Zhu
  • Qianlai Zhuang
  • Lisamarie Windham-Myers
  • Robert B. Jackson
  • Benjamin Poulter

Summary, in English

Process-based land surface models are important tools for estimating global wetland methane (CH4) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site-level patterns of freshwater wetland CH4 fluxes (FCH4) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model-observation disagreements are mainly at multi-day time scales (<15 days); (b) most of the models can capture the CH4 variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH4 production). Our evaluation suggests the need to accurately replicate FCH4 variability, especially at short time scales, in future wetland CH4 model developments.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • LU profilområde: Naturbaserade framtidslösningar
  • LTH profilområde: Aerosoler
  • eSSENCE: The e-Science Collaboration
  • Centrum för miljö- och klimatvetenskap (CEC)
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2023-11

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Geophysical Research: Biogeosciences

Volym

128

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley

Ämne

  • Environmental Sciences
  • Climate Research
  • Natural Sciences

Nyckelord

  • Methane
  • Biogeochemical models
  • wavelet analysis
  • LPJ-GUESS

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2169-8953