Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

profile

Anders Ahlström

Universitetslektor

profile

Emergent temperature sensitivity of soil organic carbon driven by mineral associations

Författare

  • Katerina Georgiou
  • Charles D. Koven
  • William R. Wieder
  • Melannie D. Hartman
  • William J. Riley
  • Jennifer Pett-Ridge
  • Nicholas J. Bouskill
  • Rose Z. Abramoff
  • Eric W. Slessarev
  • Anders Ahlström
  • William J. Parton
  • Adam F.A. Pellegrini
  • Derek Pierson
  • Benjamin N. Sulman
  • Qing Zhu
  • Robert B. Jackson

Summary, in English

Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system
  • LU profilområde: Naturbaserade framtidslösningar

Publiceringsår

2024-03

Språk

Engelska

Sidor

205-212

Publikation/Tidskrift/Serie

Nature Geoscience

Volym

17

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Climate Research

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1752-0894