The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

David Wårlind

Researcher

Default user image.

Bedrock Weathering Controls on Terrestrial Carbon-Nitrogen-Climate Interactions

Author

  • Pawlok Dass
  • Benjamin Z. Houlton
  • Yingping Wang
  • David Wårlind
  • Scott Morford

Summary, in English

Anthropogenic nitrogen deposition is widely considered to increase CO2 sequestration by land plants on a global scale. Here, we demonstrate that bedrock nitrogen weathering contributes significantly more to nitrogen-carbon interactions than anthropogenic nitrogen deposition. This working hypothesis is based on the introduction of empirical results into a global biogeochemical simulation model over the time period of the mid-1800s to the end of the 21st century. Our findings suggest that rock nitrogen inputs have contributed roughly 2–11 times more to plant CO2 capture than nitrogen deposition inputs since pre-industrial times. Climate change projections based on RCP 8.5 show that rock nitrogen inputs and biological nitrogen fixation contribute 2–5 times more to terrestrial carbon uptake than anthropogenic nitrogen deposition though year 2101. Future responses of rock N inputs on plant CO2 capture rates are more signficant at higher latitudes and in mountainous environments, where geological and climate factors promote higher rock weathering rates. The enhancement of plant CO2 uptake via rock nitrogen weathering partially resolves nitrogen-carbon discrepancies in Earth system models and offers an alternative explanation for lack of progressive nitrogen limitation in the terrestrial biosphere. We conclude that natural N inputs impart major control over terrestrial CO2 sequestration in Earth’s ecosystems.

Department/s

  • eSSENCE: The e-Science Collaboration
  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2021-10

Language

English

Publication/Series

Global Biogeochemical Cycles

Volume

35

Issue

10

Document type

Journal article

Publisher

American Geophysical Union (AGU)

Topic

  • Physical Geography

Keywords

  • bedrock weathering
  • carbon cycle
  • nitrogen cycle
  • nitrogen deposition
  • nitrogen fixation
  • nitrogen limitation

Status

Published

ISBN/ISSN/Other

  • ISSN: 0886-6236