The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

photo of Zheng Duan on Lund webpage

Zheng Duan

Senior lecturer

photo of Zheng Duan on Lund webpage

Stronger effects of accumulated soil moisture deficit on gross primary productivity and light use efficiency than lagged soil moisture deficit for cropland and forest

Author

  • Zhuoyou Jiang
  • Yanlian Zhou
  • Shang Gao
  • Zhoutong Dong
  • Yingying Wang
  • Zheng Duan
  • Wei He
  • Yibo Liu
  • Weimin Ju

Summary, in English

Many studies have underscored the impacts of drought on ecosystems, and some researchers reported the effects of accumulated soil moisture deficit (ASMD) on light use efficiency (LUE) in grassland. However, the potential effects of ASMD on gross primary productivity (GPP) and LUE for both cropland and forest ecosystems are still not understood. This study elucidated the effects of accumulated and lagged soil moisture deficit (ASMD and LSMD, respectively) on GPP and LUE in these two ecosystems by using observations from 10 cropland and 25 forest flux sites during drought years. The results showed that the effects of ASMD and LSMD on LUE/GPP for both cropland and forests obviously surpass the concurrent effects (CSMD). For cropland, the mean R2 between CSMD/LSMD/ASMD with LUE were 0.22, 0.47, 0.56, respectively, and were 0.29, 0.54, 0.74 with GPP, respectively. For forest, the mean R2 between CSMD/LSMD/ASMD with LUE were 0.21, 0.36, 0.46, respectively, and were 0.34, 0.63, and 0.65 with GPP, respectively. Additionally, the effects of ASMD and LSMD on LUE are more pronounced for cropland than for forests, and for both cropland and forest, the effect of ASMD is stronger than that of LSMD. This study underscores the crucial role of ASMD in influencing LUE and GPP for cropland and forests, thereby offering a theoretical foundation for incorporating ASMD into LUE models to enhance the accuracy of GPP simulations, especially during drought periods.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2025-02

Language

English

Publication/Series

Agricultural and Forest Meteorology

Volume

361

Document type

Journal article

Publisher

Elsevier

Topic

  • Forest Science

Keywords

  • Accumulated soil moisture deficit
  • Cropland
  • Forest
  • Gross primary productivity
  • Lagged soil moisture deficit
  • Light use efficiency

Status

Published

ISBN/ISSN/Other

  • ISSN: 0168-1923