The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

photo of Zheng Duan on Lund webpage

Zheng Duan

Senior lecturer

photo of Zheng Duan on Lund webpage

The Impact of Urbanization-Induced Land Use Change on Land Surface Temperature

Author

  • Afera Halefom
  • Yan He
  • Tatsuya Nemoto
  • Lei Feng
  • Runkui Li
  • Venkatesh Raghavan
  • Guifei Jing
  • Xianfeng Song
  • Zheng Duan

Summary, in English

Rapid urbanization can change local climate by increasing land surface temperature (LST), particularly in metropolitan regions. This study uses two decades of remote sensing data to investigate how urbanization-induced changes in land use/land cover (LULC) affect LST in the Beijing Region, China. By focusing on the key issue of LST and its contributing variables through buffer zones, we determined how variables influence LST across buffer zones—core, transit, and suburban areas. This approach is crucial for identifying and prioritizing key variables in each zone, enabling targeted, zone-specific measures that can more effectively mitigate LST rise. The main driving variables for the Beijing Region were determined, and the spatial-temporal relationship between LST and driving variables was investigated using a geographically weighted regression (GWR) model. The results demonstrate that the Beijing Region’s LST climbed from 2002 to 2022, with increases of 0.904, 0.768, and 0.248 °C in core, transit, and suburban areas, respectively. The study found that human-induced variables contributed significantly to the increase in LST across core and transit areas. Meanwhile, natural variables in suburban areas predominated and contributed to stabilizing local climates and cooling. Over two decades and in all buffer zones, GWR models slightly outperformed ordinary least squares (OLS) models, suggesting that the LST is highly influenced by its local geographical location, incorporating natural and human-induced variables. The results of this study have substantial implications for designing methods to mitigate LST across the three buffer zones in the Beijing Region.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2024-12

Language

English

Publication/Series

Remote Sensing

Volume

16

Issue

23

Document type

Journal article

Publisher

MDPI AG

Topic

  • Geosciences, Multidisciplinary

Keywords

  • buffer zones
  • human-induced
  • land surface temperature
  • urbanization

Status

Published

ISBN/ISSN/Other

  • ISSN: 2072-4292