Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Wildfire air pollution hazard during the 21st century

Author:
  • Wolfgang Knorr
  • Frank Dentener
  • Jean François Lamarque
  • Leiwen Jiang
  • Almut Arneth
Publishing year: 2017-07-31
Language: English
Pages: 9223-9236
Publication/Series: Atmospheric Chemistry and Physics
Volume: 17
Issue: 14
Document type: Journal article
Publisher: Copernicus Gesellschaft mbH

Abstract english

Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

Keywords

  • Environmental Sciences

Other

Published
  • ISSN: 1680-7316
E-mail: wolfgang [dot] knorr [at] nateko [dot] lu [dot] se

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data

Accessibility statement