Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Zheng Duan

Biträdande universitetslektor

Default user image.

Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia

Författare

  • Hongkai Gao
  • Hong Li
  • Zheng Duan
  • Ze Ren
  • Xiaoyu Meng
  • Xicai Pan

Summary, in English

Climate warming is expected to accelerate glacier retreat and shift hydrological regime, which poses great threat to regional water resources in terms of amount, variability, and quality. This is especially true in arid regions with glaciers such as the Central Asia. However, few models manage to mimic both glacier runoff and surface changes with adequate performance. To narrow this gap, we integrated a spatially distributed hydrological model (FLEX G ) and a glacier retreat model (∆h-parameterization), and tested the new model in the Urumqi Glacier No. 1 catchment, which is best monitored in China. The model inputs include climate forcing, topographic map and initial ice thickness. Here we validated the model with runoff observation at downstream and glacier measurements, i.e. three historical glacier area maps (1980, 1994 and 2002), annual glacier mass balance (GMB) and equilibrium line altitude (ELA). Results show that the FLEX G -∆h model performed well in estimating runoff (with Kling-Gupta efficiency 0.75 for hydrograph) and reproducing historical glacier area variation. Additionally the model generated reasonably spatial distribution of glacier thickness, which is important to examine glacier evolution at the Urumqi Glacier No. 1. Subsequently we ran the model forced by 12 combinations of two climate scenarios and six bias correction methods to assess the impact of climate change on glacier thinning, retreat, and its influence on water resource. The impact assessment shows that glacier area will lose up to a half (54%) of their 1980 extent in 2050, and up to 80% in 2100; while ice volume will decrease up to 79% in 2050, and 92% in 2100. The tipping point (peak water) of glacier melt supply was projected to occur around 2020 and then runoff would decrease significantly. These results alert us that there is a need for immediate mitigation measures to adapt to fast glacier change to assure long-term water security in this region.

Publiceringsår

2018-12-10

Språk

Engelska

Sidor

1160-1170

Publikation/Tidskrift/Serie

Science of the Total Environment

Volym

644

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Oceanography, Hydrology, Water Resources

Nyckelord

  • China
  • Climate change
  • FLEX hydrological model
  • Glacier retreat model
  • The Urumqi Glacier No. 1 catchment
  • Water resources

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0048-9697