Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Zhanzhang Cai

Postdoc

Default user image.

Estimation of district-level spring barley yield in southern Sweden using multi-source satellite data and random forest approach

Författare

  • Xueying Li
  • Hongxiao Jin
  • Lars Eklundh
  • EI Houssaine Bouras
  • Per-Ola Olsson
  • Zhanzhang Cai
  • Jonas Ardö
  • Zheng Duan

Summary, in English

Remote sensing observations and artificial intelligence algorithms have emerged as key components for crop yield estimation at various scales during the past decades. However, the utilization of multi-source satellite data and machine learning for estimating aggregated crop yield at the regional level in Europe has been only scarcely explored. Our study aims to bridge this research gap by focusing on the district-level spring barley yield estimation in southern Sweden from 2017 to 2022. We developed an estimation method with the random forest (RF) approach using four satellite-derived products along with two climate variables. These variables were used individually and in combinations as inputs for the RF approach. The results showed that vegetation indices (VIs) outperformed solar-induced chlorophyll fluorescence (SIF) in barley yield estimation, while combining VIs and SIF variables achieved the highest model performance (R2 = 0.77, RMSE = 488 kg/ha). The inclusion of climate variables generally had little added contributions to the model performance. Importantly, barley yield prediction could be achieved two months prior to harvest, using monthly VIs and SIF data from April and May. Our study demonstrated the feasibility of using freely accessible satellite data and the machine learning approach for estimating crop yield at the pan-European regional level. We expect that our proposed methodology can be extended to different crop types and regional-scale crop yield estimation in Europe, benefiting national and local authorities in making agricultural productivity decisions.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • LU profilområde: Naturbaserade framtidslösningar
  • eSSENCE: The e-Science Collaboration

Publiceringsår

2024-09-25

Språk

Engelska

Publikation/Tidskrift/Serie

International Journal of Applied Earth Observation and Geoinformation

Volym

134

Issue

104183

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Remote Sensing
  • Physical Geography

Nyckelord

  • Crop yield
  • Sentinel-2
  • Solar-induced chlorophyll fluorescence
  • Machine learning
  • remote sensing

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 1569-8432