Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Zhanzhang Cai

Postdoc

Default user image.

Reviews and syntheses : Remotely sensed optical time series for monitoring vegetation productivity

Författare

  • Lammert Kooistra
  • Katja Berger
  • Benjamin Brede
  • Lukas Valentin Graf
  • Helge Aasen
  • Jean Louis Roujean
  • Miriam Machwitz
  • Martin Schlerf
  • Clement Atzberger
  • Egor Prikaziuk
  • Dessislava Ganeva
  • Enrico Tomelleri
  • Holly Croft
  • Pablo Reyes Muñoz
  • Virginia Garcia Millan
  • Roshanak Darvishzadeh
  • Gerbrand Koren
  • Ittai Herrmann
  • Offer Rozenstein
  • Santiago Belda
  • Miina Rautiainen
  • Stein Rune Karlsen
  • Cláudio Figueira Silva
  • Sofia Cerasoli
  • Jon Pierre
  • Emine Tanlr Kaylkçl
  • Andrej Halabuk
  • Esra Tunc Gormus
  • Frank Fluit
  • Zhanzhang Cai
  • Marlena Kycko
  • Thomas Udelhoven
  • Jochem Verrelst

Summary, in English

Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap

Publiceringsår

2024-01

Språk

Engelska

Sidor

473-511

Publikation/Tidskrift/Serie

Biogeosciences

Volym

21

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Physical Geography

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 1726-4170