Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Vaughan Phillips

Universitetslektor

Default user image.

The Role of Ice Splintering on Microphysics of Deep Convective Clouds Forming Under Different Aerosol Conditions : Simulations Using the Model With Spectral Bin Microphysics

Författare

  • Yi Qu
  • Alexander Khain
  • Vaughan Phillips
  • Eyal Ilotoviz
  • Jacob Shpund
  • Sachin Patade
  • Baojun Chen

Summary, in English

Observations during the Ice in Clouds Experiment-Tropical (ICE-T) field experiment show that the ice particles concentration in a developing deep convective clouds at the level of T = −15 °C reached about 500 L−1, that is, many orders higher than that of ice-nucleating particle. To simulate microphysics of these clouds, the 2-D Hebrew University Cloud model (HUCM) with spectral bin microphysics was used in which two main types of ice multiplication mechanisms were included in addition to the Hallet-Mossop mechanism. In the first ice multiplication mechanism ice splinters form by drop freezing and drop-ice collisions. Ice multiplication of this type dominates during developing stage of cloud evolution, when liquid water content is significant. At later stage when clouds become nearly glaciated, ice crystals are produced largely by ice splintering during ice-ice collisions (the second ice multiplication mechanism). Simulations show that droplet size distributions, as well as size distributions of ice particles, agree well with the measurements during ICE-T. Simulations with different cloud condensation nuclei concentrations show the existence of the “optimum” cloud condensation nuclei concentration (or droplet concentration), at which concentration of ice splinters reaches maximum. In these simulations ice nucleation caused by the direct formation of ice crystals upon ice-nucleating particles, as well as the Hallett-Mossop process, has a negligible contribution to the ice crystal concentration.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2020-02-16

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Geophysical Research: Atmospheres

Volym

125

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Meteorology and Atmospheric Sciences

Nyckelord

  • mixed-phase clouds ice multiplication aerosol effects

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2169-8996